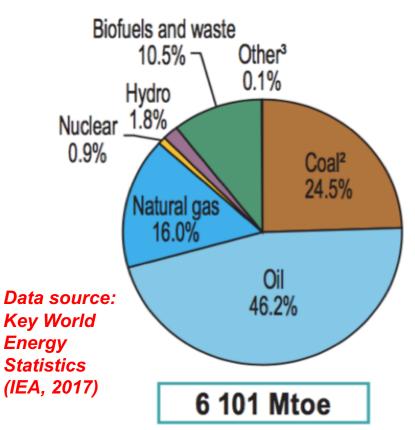
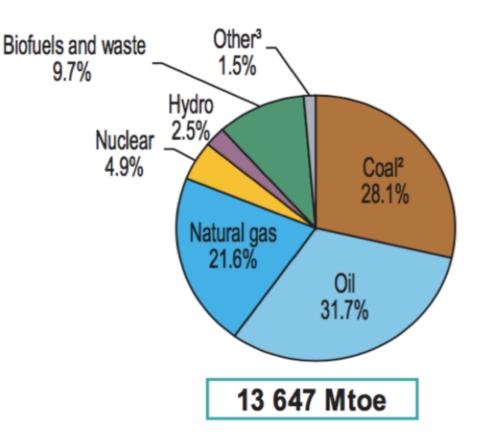


Global context of RTD activities in CSP

Latest joint efforts between Research and Industry for strengthening European CSP leadership (STAGE-STE Workshop)
European Economic and Social Committee Brussels, January 23rd, 2018

Julian Blanco CIEMAT-PSA julian.blanco@psa.es





ENERGY DECARBONIZATION PATH

Carbon based → **86.7** %

Carbon based → **81.4** %

RENEWABLE ENERGIES POTENTIAL

Finite Energy Resources		Renewable Energy Resource		
Energy Resource	TW year	Energy Resource	TW year/year	
Natural Gas	215	Waves	0.3	
Petroleum	240	Geothermal	0.3 - 2	
Uranium	90 - 300	Hydraulic	3 - 4	
Carbon	900	Biomass	2 - 6	
4.7707		Ocean thermal	3 - 11	
1 TW year equals to the production of 10 ¹² W during		conversion		
(8760 TWh), also equivalent		Wind	25 - 70	
plants of 1,000 MW installe	d power each	Solar	(23,000)	

Perez, R and Perez, M. "A fundamental look at Energy reserves for the planet". The IEA SHC Solar Update, Volume 50 (2009), 2-3

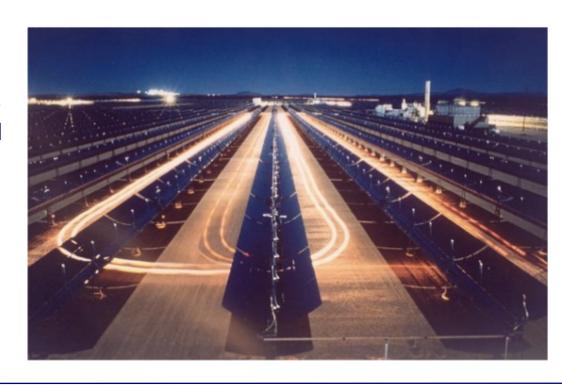
Mankind primary energy consumption (year 2015): 18,12 TW year (IEA, 2017)

KEY ROLE OF CSP/STE

Renewables production data (2015)

Wind: 838 TWh (0,09 TW year)

PV: 247 TWh (0,03 TW year)

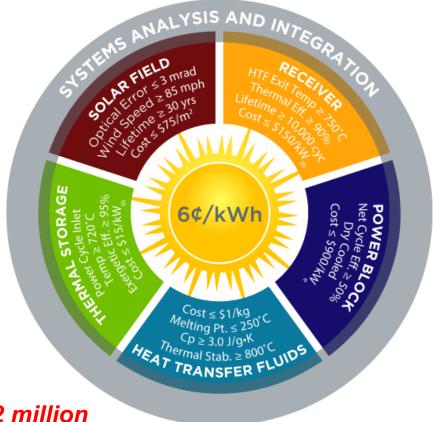

Hydro: 3978 TWh (0,45 TW year)

Total mankind primary energy consumption (2015): 18,12 TW year

Key World Energy Statistics (IEA, 2017)

Key facts

- Decarbonization speed should go much faster
- Development of non-dispatchable renewable technologies (like wind & PV) is limited
- CSP/STE is called to have a key role in any future energy scenario due to dispatchability behavior
- To make this possible, further R&D efforts are needed to achieve existing cost gap (with other renewables)



Launched by U.S. Department of Energy (DOE) in 2011 with the goal of making solar electricity cost-competitive with conventionally generated electricity by 2020. In the case of CSP the target was to reduce power generation cost up to 6 \$cents/kWh.

Competitive Programs \$9M COLLECTS (2016) \$32M CSP: APOLLO (2015) \$29M CSP SuNLaMP (2015) \$1.4M SolarMat II (2014) \$10M CSP: ELEMENTS (2014) \$1.1M SunShot Incubator (Recurring) \$4M PREDICTS (2013) \$2M SolarMat (2013) \$10M CSP-HIBRED (2013) \$27M National Lab R&D (2012) \$10M SunShot MURI (2012) \$56M CSP SunShot R&D (2012) \$0.5M BRIDGE (2012)

Total investment in CSP (2012-2016): USD 192 million

Australian Solar Thermal Reseach Initiative

Rationale

- Concentrating Solar Thermal (CST) technology will play a major role in the decarbonised energy future.
- By 2050, CST is expected to be the main source of electricity in large regions of the world (Chile, China, India, MENA, South Africa, USA, Australia, ...).
- Program & Objectives: Eight-year / AUD 87 million to increase technology readiness by:
 - Reducing CAPEX of CST Power Plants (focus on systems),
 - Increase the Capacity Factor,
 - Improving efficiency of CST components and overall
 - Program designed to align to SunShot to facilitate

Targeted Impact:

- To manufacture and build power plants in Australia creating export markets and jobs.
- To transform Australia into a global CST leader.

Most similar initiative in Europe

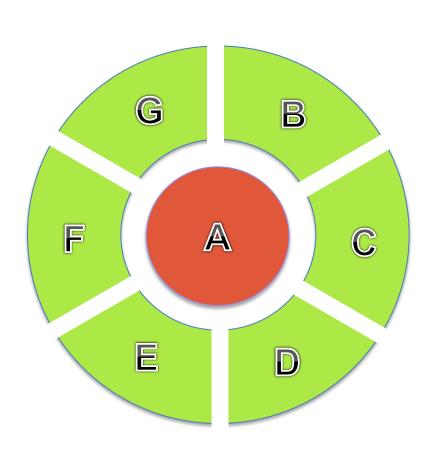
- <u>Full name</u>: Scientific and Technological Alliance for Guaranteeing the European Excellence in Concentrating Solar Thermal Energy (STAGE-STE)
- Duration: February 2014 January 2018
- Budget:
 - EC contribution: EUR 10 million
 - o In-kind: EUR 11.2 million

-Total: EUR 21.2 million

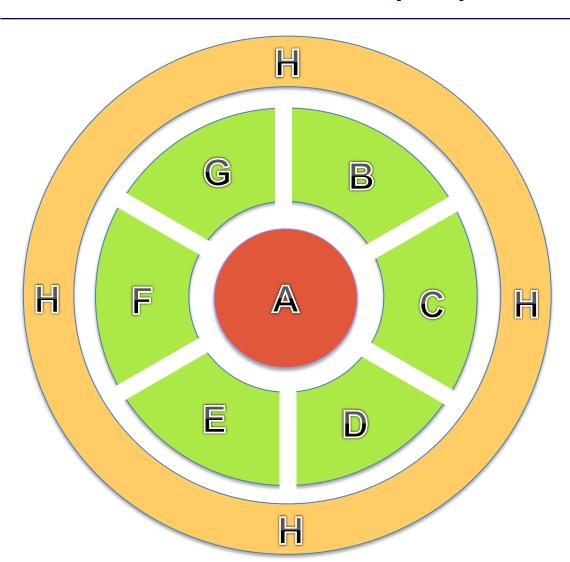
- Committed manpower: 2.504,45 pm
- Coordination & Support Work Packages: 6 groups of activities addressed to intensify the cooperation to more efficiently coordinate, complement and reinforce the activity of the different R&D European Research Centers on the CSP/STE field
- Research Work Packages: Also 6, covering the whole spectrum of topics related with Concentrated Solar Energy (Central receiver system, Line-Focusing; Thermal Energy Storage; Materials for Solar Receivers and STE Components; Solar Thermochemical Fuels; CSP & Desalination)


Participant	Participant	Carratin	Participant	
no.	organisation name	Country	no.	
1 (Coord.)	CIEMAT	SPAIN	23	
2	DLR	GERMANY	24	i
3	PSI	SWITZERLAND	25	ļ
4	CNRS-PROMES	FRANCE	26	
5	FRAUNHOFER	GERMANY	27	
6	ENEA	ITALY	28	,
7	ETHZ	SWITZERLAND	29	
8	CEA	FRANCE	30	
9	CYI	CYPRUS	31	
10	LNEG	PORTUGAL	32	
11	CTAER	SPAIN	33	
12	CNR	ITALY	34	(
13	CENER	SPAIN	35	(
14	TECNALIA	SPAIN	36	
15	UEVORA	PORTUGAL	37	
16	IMDEA	SPAIN	38	
17	CRANFIELD	UK	39	
18	IK4-TEKNIKER	SPAIN	40	
19	UNIPA	ITALY	41	ł
20	CRS4	ITALY	42	(
21	INESC-ID	PORTUGAL	43	
22	IST-ID	PORTUGAL	44	

Participant no.	Participant organisation name	Country		
23	SENER	SPAIN		
24	AREVA	FRANCE		
25	HITTITE	TURKEY		
26	ACCIONA	SPAIN		
27	SCHOTT	GERMANY		
28	ASE	ITALY		
29	ESTELA	BELGIUM		
30	ABENGOA SOLAR	SPAIN		
31	KSU	SAUDI ARABIA		
32	UNAM	MEXICO		
33	SUN	SOUTH AFRICA		
34	CSERS	LYBIA		
35	CSIRO	AUSTRALIA		
36	FUSP	BRAZIL		
37	IEECAS	CHINA		
38	UDC	CHILE		
39	UCAM	MOROCCO		
40	FBK	ITALY		
41	CNIM	FRANCE		
42	COBRA	SPAIN		
43	SUNCNIM	FRANCE		
44	UNIV. SEVILLA	SPAIN		



A. Main core objective: increased real collaboration among EU research organizations



- A. Main core objective: increased real collaboration among EU research organizations
- B. Cooperative technical and scientific development (WPs 7 to 12)
- C. Research infrastructures effective sharing
- D. Substantial staff exchange
- E. Training and capacity building
- F. Alignment of national and EC financial resources + co-sharing
- G. International collaboration


- A. Main core objective: increased real collaboration among EU research organizations
- B. Cooperative technical and scientific development (WPs 7 to 12)
- C. Research infrastructures effective sharing
- D. Substantial staff exchange
- E. Training and capacity building
- F. Alignment of national and EC financial resources + co-sharing
- G. International collaboration
- H. Interaction with industry

TO CONCLUDE ...

During the last 4 years, the existence of IRP STAGE-STE and the EERA JP-CSP has provided a greater cohesion in the CSP/STE sector in Europe, significantly improving research capabilities and the collaboration with industry.

- Results clearly show the strong benefit, added value and cost/effectiveness of this collaboration among the whole European RTD sector.
- Integrated Research Programmes should continue in the future as a very effective way to define and achieve common targets to a whole RTD sector.

